

So You Want To Do Regulatory Developmental Neurotoxicology Studies: **A Training and Validation Plan** Foster, Melanie L., Donahue, Douglas A., Mahapatra, Debabrata, Owigho, Pamela, Henry, Joyce

Introduction

- Regulatory developmental/reproductive toxicology require large numbers of animals and multiple endpoints evaluated.
- We present our training and validation plan following remodeling of our Neurotoxicology Suite and training new staff in preparation for an OECD 443 Extended One-Generation Reproductive Toxicity Study.
- OECD 443 overview on next slide

Equipment Validation

Installation, Operational, and Performance Qualifications for FDA CFR Part 11 Compliance

- San Diego Instruments Photobeam Activity System
- San Diego Instruments SR-LAB Acoustic Startle System
- Bioseb Grip Strength Gauge
- Micro-Therma 2T Thermometer
- Hamilton Thorne CASA IVOS Sperm Analysis System

Conclusions

Conduct of a regulatory developmental/reproductive study such as an OECD 443 requires a considerable amount of time and resources to fully validate a laboratory's ability to perform all aspects of this complex study design.

mfoster@ils-inc.com

Integrated Laboratory Systems LLC, Research Triangle Park, NC

Methods & Objectives

OECD (Organisation for Economic Co-operation and Development). (2018). Extended One-Generation Reproductive Toxicity Study. OECD Guideline for the Testing of Chemicals, No. 443, OECD, Paris.

complete.

Reference & Acknowledgements

We want to thank the ILS Research Assistants and Tom Earp at ILS for their support in getting our validation

Society for

Birth Defects

TERATOLOGY SOCIETY

Research &

Prevention

EST. 1960 AS THE

Poster 1

So You Want To Do Regulatory Developmental Neurotoxicology Studies: **A Training and Validation Plan**

Foster, Melanie L., Donahue, Douglas A., Mahapatra, Debabrata, Owigho, Pamela, Henry, Joyce

OECD 443 Extended One-Generation Reproductive Toxicity Study

Overview

- Objective is to evaluate effects of during all phases of the reproducti growth, and functional endpoints
- Parental (P_0) animals exposed 2 we mating, gestation, and lactation. P days.
- At least 20 litters/dose group
- Offspring (F₁) exposed via gestatio throughout life.
- General and reproductive toxicity
- Offspring (F₁) from each litter alloc
 - 1A and 1B Reproductive E
 - 2A and 2B Developmenta and up to adulthood
 - 3 Developmental Immunc
- Combined study reduces total nun compared to separate studies for

exposure to a substance	•	Bo
ive cycle and on development,	•	Est
of offspring up to PND 90.		Siz
eeks pre-mating, through	•	An
omales exposed at least 70		Pat
	•	Au
		Fur
on and lactation, and	•	T-c
	•	Не
assessed in P ₀ animals.		Thy
cated to 1 of 5 cohorts:	•	Ne
Developmental endpoints		His
I Neurotoxicity at weaning	•	Per
		Bra
otoxicity	•	Spl
mber of animals used	•	Ov
the same endpoints.		Exa
		•

Sperm Motility, Concentration, and Morphology

Endpoints

- dy Weight, Clinical Observations, Food Consumption rus Cyclicity, Mating Success, Gestation Length, Litter e, Sex Ratio
- ogenital Distance, Male Nipple Retention, Vaginal tency, Balano-Preputial Separation
- iditory Startle, Automated Test of Motor Activity, nctional Observational Battery
- cell Dependent Antibody Response Assay
- ematology, Urinalysis, Clinical Chemistry including yroid Hormones
- ecropsy with Gross Observations, Organ Weights, and stopathology
- rfusion Fixation for Neurohistopathology, including ain Morphometry
- lenic Lymphocyte Subpopulation Analysis
- varian Follicle, Corpora Lutea, and Implantation Sites amination

So You Want To Do Regulatory Developmental Neurotoxicology Studies: **A Training and Validation Plan**

Training Plan

- Research Assistants were trained in pairs to facilitate standardization of methods and observations
- Data was collected directly into Provantis, eliminating need for transcribing written data

Foster, Melanie L., Donahue, Douglas A., Mahapatra, Debabrata, Owigho, Pamela, Henry, Joyce

Functional Observational Battery (FOB)

- function.
- - 14
 - 12
 - 10 8
 - 6
 - 4
 - 2
 - Λ

Positive Control Certification Test

Hsd: Sprague Dawley rats n=15/sex/group

- Corn oil
- 4,4'-DDT 75 mg/kg
- Carbaryl 100 mg/kg

Blind ID number and randomized order used to prevent bias

Results

Research Assistants were able to confidently, accurately identify changes in sensory, motor, and autonomic nervous system

• Concordance between the trainer and 2 Research Assistants was 98% for animals in the same dose groups.

So You Want To Do Regulatory Developmental Neurotoxicology Studies: **A Training and Validation Plan**

Foster, Melanie L., Donahue, Douglas A., Mahapatra, Debabrata, Owigho, Pamela, Henry, Joyce

While Total Movements in a session shows overall difference between dose groups, the pattern of activity over time is important to reveal differences in effects.

Hsd: Sprague Dawley rats n=15/sex/group

- Saline
- Chlorpromazine 6 mg/kg
- D-Amphetamine 4 mg/kg \bullet

Positive Control Motor Activity Data

San Diego Instruments Open Field Photobeam Activity System (PAS)

So You Want To Do Regulatory Developmental Neurotoxicology Studies: **A Training and Validation Plan** Foster, Melanie L., Donahue, Douglas A., Mahapatra, Debabrata, Owigho, Pamela, Henry, Joyce

Neuropathology

- In situ perfusion of the brain and peripheral nervous system in PND 22 and PND 77 F₁ pups
- Brain morphometry as well as traditional neuropathological examination of CNS and PNS

Hsd: Sprague Dawley rats n=3/sex/group

- Corn oil
- 4,4'-DDT 75 mg/kg
- Carbaryl 100 mg/kg

Uterus stained with 10% Potassium Ferricyanide for identification of implantation sites (arrows) at necropsy, then processed and stained with H&E for histopathology

Reproductive Pathology

Staining uterus to count implantation sites as well as histopathology • Vaginal smears for estrus cycle determination • Ovarian follicle and corpora lutea examination • Sperm motility, concentration and morphology

